Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Cell Mol Life Sci ; 80(10): 310, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777592

RESUMO

Skeletal disorders are problematic aspects for the aquaculture industry as skeletal deformities, which affect most species of farmed fish, increase production costs and affect fish welfare. Following recent findings that show the presence of osteoactive compounds in marine organisms, we evaluated the osteogenic and mineralogenic potential of commercially available microalgae strains Skeletonema costatum and Tetraselmis striata CTP4 in several fish systems. Ethanolic extracts increased extracellular matrix mineralization in gilthead seabream (Sparus aurata) bone-derived cell cultures and promoted osteoblastic differentiation in zebrafish (Danio rerio) larvae. Long-term dietary exposure to both extracts increased bone mineralization in zebrafish and upregulated the expression of genes involved in bone formation (sp7, col1a1a, oc1, and oc2), bone remodeling (acp5a), and antioxidant defenses (cat, sod1). Extracts also improved the skeletal status of zebrafish juveniles by reducing the incidence of skeletal anomalies. Our results indicate that both strains of microalgae contain osteogenic and mineralogenic compounds, and that ethanolic extracts have the potential for an application in the aquaculture sector as dietary supplements to support fish bone health. Future studies should also identify osteoactive compounds and establish whether they can be used in human health to broaden the therapeutic options for bone erosive disorders such as osteoporosis.


Assuntos
Microalgas , Dourada , Animais , Humanos , Osteogênese , Peixe-Zebra , Suplementos Nutricionais , Dourada/genética , Dourada/metabolismo
2.
Biochimie ; 214(Pt B): 49-60, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37307958

RESUMO

Matrix Gla protein (MGP) was first identified as a calcification physiological inhibitor and the causal agent of the Keutel syndrome. MGP has been suggested to play a role in development, cell differentiation, and tumorigenesis. This study aimed to compare MGP expression and methylation status in different tumors and adjacent tissues, using The Cancer Genome Atlas (TCGA) data repository. We investigated if changes in MGP mRNA expression were correlated to cancer progression and whether the correlation coefficients could be used for prognosis. Strong correlations were observed between altered MGP levels and disease progression in breast, kidney, liver, and thyroid cancers, suggesting that it could be used to complement current clinical biomarker assays, for early cancer diagnosis. We have also analyzed MGP methylation and identified CpG sites in its promoter and first intron with clear differences in methylation status between healthy and tumoral tissue providing evidence for epigenetic regulation of MGP transcription. Furthermore, we demonstrate that these alterations correlate with the overall survival of the patients suggesting that its assessment can serve as an independent prognostic indicator of patients' survival.


Assuntos
Doenças das Cartilagens , Neoplasias , Humanos , Epigênese Genética , Expressão Gênica , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico
3.
Biomolecules ; 13(5)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37238675

RESUMO

The transcription factor MEF2C is crucial in neuronal, cardiac, bone and cartilage molecular processes, as well as for craniofacial development. MEF2C was associated with the human disease MRD20, whose patients show abnormal neuronal and craniofacial development. Zebrafish mef2ca;mef2cb double mutants were analysed for abnormalities in craniofacial and behaviour development through phenotypic analysis. Quantitative PCR was performed to investigate the expression levels of neuronal marker genes in mutant larvae. The motor behaviour was analysed by the swimming activity of 6 dpf larvae. We found that mef2ca;mef2cb double mutants display several abnormal phenotypes during early development, including those already described in zebrafish carrying mutations in each paralog, but also (i) a severe craniofacial phenotype (comprising both cartilaginous and dermal bone structures), (ii) developmental arrest due to the disruption of cardiac oedema and (iii) clear alterations in behaviour. We demonstrate that the defects observed in zebrafish mef2ca;mef2cb double mutants are similar to those previously described in MEF2C-null mice and MRD20 patients, confirming the usefulness of these mutant lines as a model for studies concerning MRD20 disease, the identification of new therapeutic targets and screening for possible rescue strategies.


Assuntos
Fatores de Transcrição MEF2 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Camundongos , Osso e Ossos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Fenótipo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834795

RESUMO

Ectopic calcification refers to the pathological accumulation of calcium ions in soft tissues and is often the result of a dysregulated action or disrupted function of proteins involved in extracellular matrix mineralization. While the mouse has traditionally been the go-to model organism for the study of pathologies associated with abnormal calcium deposition, many mouse mutants often have exacerbated phenotypes and die prematurely, limiting the understanding of the disease and the development of effective therapies. Since the mechanisms underlying ectopic calcification share some analogy with those of bone formation, the zebrafish (Danio rerio)-a well-established model for studying osteogenesis and mineralogenesis-has recently gained momentum as a model to study ectopic calcification disorders. In this review, we outline the mechanisms of ectopic mineralization in zebrafish, provide insights into zebrafish mutants that share phenotypic similarities with human pathological mineralization disorders, list the compounds capable of rescuing mutant phenotypes, and describe current methods to induce and characterize ectopic calcification in zebrafish.


Assuntos
Calcinose , Cálcio , Humanos , Camundongos , Animais , Cálcio/metabolismo , Peixe-Zebra/genética , Calcinose/metabolismo , Osteogênese , Matriz Extracelular/metabolismo , Cálcio da Dieta/metabolismo , Calcificação Fisiológica
5.
Int J Biochem Cell Biol ; 154: 106332, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372390

RESUMO

Mutations in Zinc finger 687 (ZNF687) were associated with Paget's disease of bone (PDB), a disease characterized by increased bone resorption and excessive bone formation. It was suggested that ZNF687 plays a role in bone differentiation and development. However, the mechanisms involved in ZNF687 regulation remain unknown. This study aimed to obtain novel knowledge regarding ZNF687 transcriptional and epigenetic regulation. Through in silico analysis, we hypothesized three ZNF687 promoter regions located upstream exon 1 A, 1B, and 1 C and denominated promoter regions 1, 2, and 3, respectively. Their functionality was confirmed by luciferase activity assays and positive/negative regulatory regions were identified using promoter deletions constructs. In silico analysis revealed a high density of CpG islands in these promoter regions and in vitro methylation suppressed promoters' activity. Using bioinformatic approaches, bone-associated transcription factor binding sites containing CpG dinucleotides were identified, including those for NFκB, PU.1, DLX5, and SOX9. By co-transfection in HEK293 and hFOB cells, we found that DLX5 specifically activated ZNF687 promoter region 1, and its methylation impaired DLX5-driven promoter stimulation. NFκB repressed and activated promoter regions 1 and 2, respectively, and these activities were affected by methylation. PU.1 induced ZNF687 promoter region 1 which was affected by methylation. SOX9 differentially regulated ZNF687 promoters in HEK293 and hFOB cells that were impaired after methylation. In conclusion, this study provides novel insights into ZNF687 regulation by demonstrating that NFκB, PU.1, DLX5, and SOX9 are regulators of ZNF687 promoters, and DNA methylation influences their activity. The contribution of the dysregulation of these mechanisms in PDB should be further elucidated.


Assuntos
Osteíte Deformante , Humanos , Osteíte Deformante/genética , Epigênese Genética , Células HEK293 , Ilhas de CpG/genética , Metilação de DNA , Dedos de Zinco
6.
Nutrients ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500990

RESUMO

Osteoporosis is characterized by an abnormal bone structure with low bone mass and degradation of microarchitecture. Oxidative stress induces imbalances in osteoblast and osteoclast activity, leading to bone degradation, a primary cause of secondary osteoporosis. Doxorubicin (DOX) is a widely used chemotherapy drug for treating cancer, known to induce secondary osteoporosis. The mechanism underlying DOX-induced bone loss is still not fully understood, but one of the relevant mechanisms is through a massive accumulation of reactive oxygen and nitrogen species (i.e., ROS and NOS) leading to oxidative stress. We investigated the effects of antioxidants Resveratrol and MitoTEMPO on DOX-induced bone impairment using the zebrafish model. DOX was shown to increase mortality, promote skeletal deformities, induce alterations on intestinal villi, impair growth and mineralization and significantly downregulate osteoblast differentiation markers osteocalcin 2 and osterix/sp7. Lipid peroxidation was significantly increased in DOX-supplemented groups as compared to control and antioxidants, suggesting ROS formation as one of the key factors for DOX-induced bone loss. Furthermore, DOX affected mineral contents, suggesting an altered mineral metabolism. However, upon supplementation with antioxidants, DOX-induced effects on mineral content were rescued. Our data show that supplementation with antioxidants effectively improves the overall growth and mineralization in zebrafish and counteracts DOX-induced bone anomalies.


Assuntos
Antioxidantes , Peixe-Zebra , Animais , Antioxidantes/metabolismo , Doxorrubicina/toxicidade , Estresse Oxidativo , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499492

RESUMO

Secondary osteoporosis has been associated with cancer patients undertaking Doxorubicin (DOX) chemotherapy. However, the molecular mechanisms behind DOX-induced bone loss have not been elucidated. Molecules that can protect against the adverse effects of DOX are still a challenge in chemotherapeutic treatments. We investigated the effect and mechanism of DOX in osteoclast differentiation and used the Sirt 1 activator resveratrol (RES) to counteract DOX-induced effects. RAW 264.7 cells were differentiated into osteoclasts under cotreatment with DOX and RES, alone or combined. RES treatment inhibited DOX-induced osteoclast differentiation, reduced the expression of osteoclast fusion marker Oc-stamp and osteoclast differentiation markers Rank, Trap, Ctsk and Nfatc1. Conversely, RES induced the upregulation of antioxidant genes Sod 1 and Nrf 2 while DOX significantly reduced the FoxM1 expression, resulting in oxidative stress. Treatment with the antioxidant MitoTEMPO did not influence DOX-induced osteoclast differentiation. DOX-induced osteoclastogenesis was studied using the cathepsin-K zebrafish reporter line (Tg[ctsk:DsRed]). DOX significantly increased ctsk signal, while RES cotreatment resulted in a significant reduction in ctsk positive cells. RES significantly rescued DOX-induced mucositis in this model. Additionally, DOX-exposed zebrafish displayed altered locomotor behavior and locomotory patterns, while RES significantly reversed these effects. Our research shows that RES prevents DOX-induced osteoclast fusion and activation in vitro and in vivo and reduces DOX-induced mucositis, while improving locomotion parameters.


Assuntos
Reabsorção Óssea , Peixe-Zebra , Animais , Resveratrol/farmacologia , Resveratrol/metabolismo , Peixe-Zebra/metabolismo , Osteoclastos/metabolismo , Osteogênese , Diferenciação Celular , Doxorrubicina/efeitos adversos , Doxorrubicina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/metabolismo , Reabsorção Óssea/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(48): e2209231119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417434

RESUMO

The shaping of bone structures relies on various cell types and signaling pathways. Here, we use the zebrafish bifurcating fin rays during regeneration to investigate bone patterning. We found that the regenerating fin rays form via two mineralization fronts that undergo an osteoblast-dependent fusion/stitching until the branchpoint, and that bifurcation is not simply the splitting of one unit into two. We identified tartrate-resistant acid phosphatase-positive osteolytic tubular structures at the branchpoints, hereafter named osteolytic tubules (OLTs). Chemical inhibition of their bone-resorbing activity strongly impairs ray bifurcation, indicating that OLTs counteract the stitching process. Furthermore, by testing different osteoactive compounds, we show that the position of the branchpoint depends on the balance between bone mineralization and resorption activities. Overall, these findings provide a unique perspective on fin ray formation and bifurcation, and reveal a key role for OLTs in defining the proximo-distal position of the branchpoint.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Osso e Ossos/metabolismo
9.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015130

RESUMO

Bone disorders affect millions of people worldwide and treatments currently available often produce undesirable secondary effects or have limited efficacy. It is therefore of the utmost interest for patients to develop more efficient drugs with reduced off-target activities. In the long process of drug development, screening and preclinical validation have recently gained momentum with the increased use of zebrafish as a model organism to study pathological processes related to human bone disorders, and the development of zebrafish high-throughput screening assays to identify bone anabolic compounds. In this review, we provided a comprehensive overview of the literature on zebrafish bone-related assays and evaluated their performance towards an integration into screening pipelines for the discovery of mineralogenic/osteogenic compounds. Tools available to standardize fish housing and feeding procedures, synchronize embryo production, and automatize specimen sorting and image acquisition/analysis toward faster and more accurate screening outputs were also presented.

10.
Genome ; 65(10): 513-523, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037528

RESUMO

Optineurin (OPTN) is involved in a variety of mechanisms, such as autophagy, vesicle trafficking, and nuclear factor kappa-B (NF-κB) signaling. Mutations in the OPTN gene have been associated with different pathologies, including glaucoma, amyotrophic lateral sclerosis, and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood, the objective of the present work was to characterize the zebrafish optn gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish optn presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and three-dimensional structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish optn gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish optn and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Membrana Transportadoras , NF-kappa B , Fator de Transcrição TFIIIA , Proteínas de Peixe-Zebra , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genômica , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Sci Rep ; 12(1): 9325, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35665761

RESUMO

CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental condition characterized primarily by seizures and impairment of cognitive and motor skills. Additional phenotypes include microcephaly, dysmorphic facial features, and scoliosis. Mutations in cyclin-dependent kinase-like 5 (CDKL5) gene, encoding a kinase essential for normal brain development and function, are responsible for CDD. Zebrafish is an accepted biomedical model for the study of several genetic diseases and has many advantages over other models. Therefore, this work aimed to characterize the phenotypic, behavioral, and molecular consequences of the Cdkl5 protein disruption in a cdkl5 mutant zebrafish line (sa21938). cdkl5sa21938 mutants displayed a reduced head size, suggesting microcephaly, a feature frequently observed in CDD individuals. Double staining revealed shorter craniofacial cartilage structures and decrease bone mineralization in cdkl5 homozygous zebrafish indicating an abnormal craniofacial cartilage development and impaired skeletal development. Motor behavior analysis showed that cdkl5sa21938 embryos had less frequency of double coiling suggesting impaired glutamatergic neurotransmission. Locomotor behavior analysis revealed that homozygous embryos swim shorter distances, indicative of impaired motor activity which is one of the main traits of CCD. Although no apparent spontaneous seizures were observed in these models, upon treatment with pentylenetetrazole, seizure behavior and an increase in the distance travelled were observed. Quantitative PCR showed that neuronal markers, including glutamatergic genes were dysregulated in cdkl5sa21938 mutant embryos. In conclusion, homozygous cdkl5sa21938 zebrafish mimic several characteristics of CDD, thus validating them as a suitable animal model to better understand the physiopathology of this disorder.


Assuntos
Microcefalia , Peixe-Zebra , Animais , Síndromes Epilépticas , Humanos , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Convulsões/genética , Peixe-Zebra/genética
12.
Chemosphere ; 303(Pt 3): 135198, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35660050

RESUMO

The presence of microplastics in the aquatic ecosystem represents a major issue for the environment and human health. The capacity of organic pollutants to adsorb onto microplastic particles raises additional concerns, as it creates a new route for toxic compounds to enter the food web. Current knowledge on the impact of pristine and/or contaminated microplastics on aquatic organisms remains insufficient, and we provide here new insights by evaluating their biological effects in zebrafish (Danio rerio). Zebrafish larvae were raised in ZEB316 stand-alone housing systems and chronically exposed throughout their development to polyethylene particles of 20-27 µm, pristine (MP) or spiked with benzo[α]pyrene (MP-BaP), supplemented at 1% w/w in the fish diet. While they had no effect at 30 days post-fertilization (dpf), MP and MP-BaP affected growth parameters at 90 and 360 dpf. Relative fecundity, egg morphology, and yolk area were also impaired in zebrafish fed MP-BaP. Zebrafish exposed to experimental diets exhibited an increased incidence of skeletal deformities at 30 dpf as well as an impaired development of caudal fin/scales, and a decreased bone quality at 90 dpf. An intergenerational bone formation impairment was also observed in the offspring of parents exposed to MP or MP-BaP through a reduction of the opercular bone in 6 dpf larvae. Beside a clear effect on bone development, histological analysis of the gut revealed a reduced number of goblet cells in zebrafish fed MP-BaP diet, a sign of intestinal inflammation. Finally, exposure of larvae to MP-BaP up-regulated the expression of genes associated with the BaP response pathway, while negatively impacting the expression of genes involved in oxidative stress. Altogether, these data suggest that long-term exposure to pristine/contaminated microplastics not only jeopardizes fish growth, reproduction performance, and skeletal health, but also causes intergenerational effects.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Benzo(a)pireno/análise , Ecossistema , Larva , Microplásticos/toxicidade , Plásticos/metabolismo , Polietileno/metabolismo , Poluentes Químicos da Água/análise , Peixe-Zebra/metabolismo
13.
Toxicol In Vitro ; 83: 105404, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35654257

RESUMO

The toxicity of diphenyl ditelluride (PhTe)2 is associated with its ability to oxidize sulfhydryl groups from biological molecules. Therefore, we evaluated possible molecular mechanisms of toxicity induced by this organochalcogen in Escherichia coli (E. coli) by evaluating oxidative damage markers, relative expression of genes associated with the cellular redox state in bacteria, such as katG, sodA, sodB, soxS, and oxyR, as well as the activity of enzymes responsible for cellular redox balance. After exposure of (PhTe)2 (6, 12, and 24 µg/mL), there was a decrease in non-protein thiols (NPSH) levels, an increase in protein carbonylation and lipid peroxidation in E. coli. Intra- and extracellular reactive species (RS) was increased at concentrations of 6, 12, and 24 µg/mL. The superoxide dismutase (SOD) activity was increased at the three concentrations tested, while catalase (CAT) activity was higher at 12 and 24 µg/mL. The soxS gene showed lower expression at the three concentrations tested, while the oxyR gene was supressed at 24 µg/mL. The katG antioxidant response gene showed lower expression, and sodA and sodB were positively activated, except for sodB at 6 µg/mL. Our findings demonstrate that exposure to (PhTe)2 induced RS formation, NPSH depletion and changes in transcriptional factors regulation, characterizing it as a multi-target compound, causing disruption in cellular oxidative state, as well as molecular mechanisms associated in E. coli.


Assuntos
Escherichia coli , Superóxido Dismutase , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Derivados de Benzeno , Catalase/genética , Catalase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Compostos Organometálicos , Oxirredução , Estresse Oxidativo , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
14.
Front Nutr ; 9: 888360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35614979

RESUMO

Bone metabolic disorders such as osteoporosis are characterized by the loss of mineral from the bone tissue leading to its structural weakening and increased susceptibility to fractures. A growing body of evidence suggests that inflammation and oxidative stress play an important role in the pathophysiological processes involved in the rise of these conditions. As the currently available therapeutic strategies are often characterized by toxic effects associated with their long-term use, natural antioxidants and anti-inflammatory compounds such as polyphenols promise to be a valuable alternative for the prevention and treatment of these disorders. In this scope, the marine environment is becoming an important source of bioactive compounds with potential pharmacological applications. Here, we explored the bioactive potential of three species of holothurians (Echinodermata) and four species of tunicates (Chordata) as sources of antioxidant and anti-inflammatory compounds with a particular focus on polyphenolic substances. Hydroethanolic and aqueous extracts were obtained from animals' biomass and screened for their content of polyphenols and their antioxidant and anti-inflammatory properties. Hydroethanolic fractions of three species of tunicates displayed high polyphenolic content associated with strong antioxidant potential and anti-inflammatory activity. Extracts were thereafter tested for their capacity to promote bone formation and mineralization by applying an assay that uses the developing operculum of zebrafish (Danio rerio) to assess the osteogenic activity of compounds. The same three hydroethanolic fractions from tunicates were characterized by a strong in vivo osteogenic activity, which positively correlated with their anti-inflammatory potential as measured by COX-2 inhibition. This study highlights the therapeutic potential of polyphenol-rich hydroethanolic extracts obtained from three species of tunicates as a substrate for the development of novel drugs for the treatment of bone disorders correlated to oxidative stress and inflammatory processes.

17.
Neurol Sci ; 43(1): 319-326, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33999292

RESUMO

The MEF2C gene encodes a transcription factor known to play a crucial role in molecular pathways affecting neuronal development. MEF2C mutations were described as a genetic cause of developmental disease (MRD20), and several reports sustain its involvement in dementia-related conditions, such as Alzheimer's disease and amyotrophic lateral sclerosis. These pathologies and frontotemporal degeneration (FTLD) are thought to share common physiopathological pathways. In this exploratory study, we searched for alterations in the DNA sequence of exons and boundaries, including 5'- and 3'-untranslated regions (5'UTR, 3'UTR), of MEF2C gene in 11 patients with clinical phenotypes related with MRD20 or FTLD. We identified a heterozygous deletion of 13 nucleotides in the 5'UTR region of a 69 years old FTLD patient. This alteration was absent in 200 healthy controls, suggesting a contribution to this patient's disease phenotype. In silico analysis of the mutated sequence indicated changes in mRNA secondary structure and stability, thus potentially affecting MEF2C protein levels. Furthermore, in vitro functional analysis of this mutation revealed that the presence of this deletion abolished the transcriptional activity of the gene in human embryonic cells and rat brain neurons, probably by modifying MEF2C expression. Altogether, our results provide evidence for the involvement of MEF2C in FTLD manifesting with seizures.


Assuntos
Degeneração Lobar Frontotemporal , Fatores de Transcrição MEF2 , Idoso , Degeneração Lobar Frontotemporal/genética , Humanos , Fatores de Transcrição MEF2/genética , Mutação
18.
Ecotoxicol Environ Saf ; 226: 112838, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607190

RESUMO

Persistent and ubiquitous organic pollutants, such as the polycyclic aromatic hydrocarbon benzo[⍺]pyrene (BaP), represent a major threat to aquatic organisms and human health. Beside some well-documented adverse effects on the development and reproduction of aquatic organisms, BaP was recently shown to affect fish bone formation and skeletal development through mechanisms that remain poorly understood. In this work, zebrafish bone-related in vivo assays were used to evaluate the osteotoxic effects of BaP during bone development and regeneration. Acute exposure of zebrafish larvae to BaP from 3 to 6 days post-fertilization (dpf) induced a dose-dependent reduction of the opercular bone size and a depletion of osteocalcin-positive cells, indicating an effect on osteoblast maturation. Chronic exposure of zebrafish larvae to BaP from 3 to 30 dpf affected the development of the axial skeleton and increased the incidence and severity of skeletal deformities. In young adults, BaP affected the mineralization of newly formed fin rays and scales, and impaired fin ray patterning and scale shape, through mechanisms that involve an imbalanced bone remodeling. Gene expression analyses indicated that BaP induced the activation of xenobiotic and metabolic pathways, while negatively impacting extracellular matrix formation and organization. Interestingly, BaP exposure positively regulated inflammation markers in larvae and increased the recruitment of neutrophils. A direct interaction between neutrophils and bone extracellular matrix or bone forming cells was observed in vivo, suggesting a role for neutrophils in the mechanisms underlying BaP osteotoxicity. Our work provides novel data on the cellular and molecular players involved in BaP osteotoxicity and brings new insights into a possible role for neutrophils in inflammatory bone reduction.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Peixe-Zebra , Animais , Benzo(a)pireno/toxicidade , Humanos , Larva , Pirenos
19.
Front Nutr ; 8: 719438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485367

RESUMO

Osteoporosis is an aging-related disease and a worldwide health issue. Current therapeutics have failed to reduce the prevalence of osteoporosis in the human population, thus the discovery of compounds with bone anabolic properties that could be the basis of next generation drugs is a priority. Marine plants contain a wide range of bioactive compounds and the presence of osteoactive phytochemicals was investigated in two halophytes collected in Brittany (France): the invasive Spartina alterniflora and the native Salicornia fragilis. Two semi-purified fractions, prepared through liquid-liquid extraction, were assessed for phenolic and flavonoid contents, and for the presence of antioxidant, mineralogenic and osteogenic bioactivities. Ethyl acetate fraction (EAF) was rich in phenolic compounds and exhibited the highest antioxidant activity. While S. fragilis EAF only triggered a weak proliferative effect in vitro, S. alterniflora EAF potently induced extracellular matrix mineralization (7-fold at 250 µg/mL). A strong osteogenic effect was also observed in vivo using zebrafish operculum assay (2.5-fold at 10 µg/mL in 9-dpf larvae). Results indicate that polyphenol rich EAF of S. alterniflora has both antioxidant and bone anabolic activities. As an invasive species, this marine plant may represent a sustainable source of molecules for therapeutic applications in bone disorders.

20.
J Cell Biochem ; 122(10): 1556-1566, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34254709

RESUMO

Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is responsible for the dephosphorylation and inactivation of ERK, JNK and p38, which are mitogen-activated protein kinases involved in cell proliferation, differentiation and apoptosis, but also in inflammation processes. Given its importance for cellular signalling, DUSP4 is subjected to a tight regulation and there is growing evidence that its expression is dysregulated in several tumours. However, the mechanisms underlying DUSP4 transcriptional regulation remain poorly understood. Here, we analysed the regulation of the human DUSP4 promoters 1 and 2, located upstream of exons 1 and 2, respectively, by the cancer-related transcription factors (TFs) STAT3, FOXA1, CTCF and YY1. The presence of binding sites for these TFs was predicted in both promoters through the in silico analysis of DUSP4, and their functionality was assessed through luciferase activity assays. Regulatory activity of the TFs tested was found to be promoter-specific. While CTCF stimulated the activity of promoter 2 that controls the transcription of variants 2 and X1, STAT3 stimulated the activity of promoter 1 that controls the transcription of variant 1. YY1 positively regulated both promoters, although to different extents. Through site-directed mutagenesis, the functionality of YY1 binding sites present in promoter 2 was confirmed. This study provides novel insights into the transcriptional regulation of DUSP4, contributing to a better comprehension of the mechanisms of its dysregulation observed in several types of cancer.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Fosfatases de Especificidade Dupla/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição YY1/metabolismo , Apoptose/fisiologia , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Fosfatases de Especificidade Dupla/metabolismo , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/genética , Fator de Transcrição YY1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...